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Highlights 32 

• Elevation accuracy of ASTER, SRTM, ALOS, and TDX DEMs for Hispaniola was 33 

assessed 34 

• RTK GPS and LiDAR measurements were used as reference data for accuracy analysis 35 

• TDX DEMs were filtered to remove building and tree pixels for generating DTMs 36 

• The potential coastal inundation areas depicted by LiDAR and TDX DTMs were 37 

compared 38 

• TDX DEMs provides the best global data source for mapping coastal flooding 39 

  40 
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Abstract 41 

 42 

Digital elevation models (DEMs) derived from remote sensing data provide a valuable and 43 

consistent data source for mapping coastal flooding at local and global scales.  Mapping of flood 44 

risk requires quantification of the error in DEM elevations and its effect on delineation of flood 45 

zones.  The ASTER, SRTM, ALOS, and TanDEM-X (TDX) DEMs for the island of Hispaniola 46 

were examined by comparing them with GPS and LiDAR measurements.  The comparisons were 47 

based on a series of error measures including root mean square error (RMSE) and absolute error 48 

at 90% quantile (LE90).  When compared with more than 2,000 GPS measurements with 49 

elevations below 7 m, RMSE and LE90 values for ASTER, SRTM, ALOS, TDX DEMs were 50 

8.44 and 14.29, 3.82 and 5.85, 2.08 and 3.64, and 1.74 and 3.20 m, respectively.  In contrast, 51 

RMSE and LE90 values for the same DEMs were 4.24 and 6.70, 4.81 and 7.16, 4.91 and 6.82, 52 

and 2.27 and 3.66 m when compared to DEMs from 150 km2 LiDAR data, which included 53 

elevations as high as 20 m.  The expanded area with LiDAR coverage included additional types 54 

of land surface, resulting in differences in error measures.  Comparison of RMSEs indicated that 55 

the filtering of TDX DEMs using four methods improved the accuracy of the estimates of ground 56 

elevation by 20-43%.  DTMs generated by interpolating the ground pixels from a progressive 57 

morphological filter, using an empirical Bayesian kriging method, produced an RMSE of 1.06 m 58 

and LE90 of 1.73 m when compared to GPS measurements, and an RMSE of 1.30 m and LE90 59 

of 2.02 m when compared to LiDAR data.  Differences in inundation areas based on TDX and 60 

LiDAR DTMs were between -13% and -4% for scenarios of 3, 5, 10, and 15 m water level rise, a 61 

much narrower range than inundation differences between ASTER, SRTM, ALOS and LiDAR.  62 

The TDX DEMs deliver high resolution global DEMs with unprecedented elevation accuracy, 63 
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hence, it is recommended for mapping coastal flood risk zones on a global scale, as well as at a 64 

local scale in developing countries where data with higher accuracy are unavailable.  65 

 66 

Keywords: TanDEM-X, ASTER, SRTM, ALOS, LiDAR, RTK-GPS, DEM, Elevation 67 

Accuracy, Coastal Flood 68 

  69 
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1. Introduction 70 

Coastal zones are highly sought-after locations for residential, commercial, or tourism 71 

development because of an abundance of available resources and trading opportunities 72 

(McGranahan et al., 2007).  Unfortunately, many coastal areas are characterized by low-relief 73 

topography only a few meters above sea level, and are constantly subjected to the impacts of 74 

wind, waves, currents, and tides (Komar, 1998).  The concentration of population and economic 75 

activities in the coastal zone exposes residents and infrastructure to an assortment of hazards, 76 

particularly flooding from storm surge in combination with high tides and overbank river flows.  77 

Sea level rise and variation in storm activity due to climatic change (Knutson et al., 2010; 78 

Nicholls et al., 2011) will increase the risk of flooding, threatening coastal residents.  Therefore, 79 

it is critical to map areas likely to be flooded by storm surge and sea level rise, in order to inform 80 

policy-makers and the public about potential impacts on population, property, and infrastructure.   81 

The quality of mapping areas vulnerable to flooding relies upon the accuracy of a digital terrain 82 

model (DTM), which is often derived from airborne and satellite remote sensing.  Methods 83 

employed to generate elevation data through remote sensing include optical stereo matching, 84 

radar interferometry, and light detection and ranging (LiDAR) (Takaku et al., 2014).  DTMs with 85 

root-mean-square error (RMSE) as low as 0.10-0.15 m can be derived from airborne LiDAR 86 

remote sensing (Shan and Toth, 2008), and are often utilized to map coastal and freshwater 87 

flooding risk in developed countries.  For example, Zhang (2011) and Zhang et al. (2011) used 88 

LiDAR DTMs to map potentially flooded areas, population, and property caused by sea level rise 89 

in South Florida in the United States (U.S.).  However, LiDAR data are rarely available in 90 

developing countries because of the prohibitive cost and technical barriers to data collection and 91 

processing.  Additionally, the development of coastal zones occurs on a global scale, thus a 92 
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global DTM is needed to assess the cumulative effect of human activity on coastal flooding 93 

(McGranahan et al., 2007).  Satellite based technology such as synthetic aperture radar (SAR) 94 

and stereo analysis of overlapping optical imagery offers a viable solution for collecting the 95 

elevations of the Earth’s surface at a global scale. 96 

 97 

Launched in 2000 by the U.S. National Aeronautics and Space Administration (NASA), the 98 

Shuttle Radar Topography Mission (SRTM) generated the first free global digital elevation 99 

model (DEM) for the lands between latitudes 600 N and 560S (Farr et al., 2007).  In 2009, the 100 

Ministry of Economy, Trade, and Industry (METI) of Japan and NASA released the Advanced 101 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global DEM for lands 102 

between 830N and 830S (Abrams et al. 2010; Tachikawa et al. 2011a), extending the coverage 103 

beyond that of SRTM.  These two DEMs, especially the former, have been used to map potential 104 

flood areas on a global scale, and to document the population impacted by increased flooding 105 

due to sea level rise (Hinkel et al., 2014; McGranahan et al., 2007; Neumann et al., 2015).  106 

However, by comparing the areas of impacted land and population derived from LiDAR and 107 

SRTM data along the U.S. Coast, Kulp and Strauss (2016) demonstrated that errors in SRTM in 108 

low-lying areas resulted in a large underestimate of coastal vulnerability to sea level rise 109 

inundation.  For example, for a flood level 2-3 m above the mean higher high water level, SRTM 110 

data under-predicted the inundated land areas and population by 50% and 60%, respectively.  111 

 112 

Several studies have used SRTM and ASTER DEMs to depict the extent of inundation caused by 113 

sea level rise on a local scale (Demirkesen et al., 2008, 2007; Ho et al., 2010).  However, 114 

sensitivity analysis of flood risk using LiDAR, SRTM, and ASTER DEMs for Lagos City, 115 
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Nigeria showed that the flooded coastal areas estimated by ASTER and SRTM data were 3-10 116 

times less than the flooded area from LiDAR (van de Sande et al., 2012).  With the recent release 117 

of two global DEMs, the TanDEM-X (TDX) DEM by the German Aerospace Center (DLR) and 118 

the Advanced Land Observing Satellite (ALOS) World 3D DEM by the Japan Aerospace 119 

Exploration Agency (JAXA), more data are available for mapping the extent of flooding.  The 120 

TDX mission specified the absolute vertical error at the 90% quantile (LE90) of the TDX DEM 121 

to be 10 m.  However, a comparison of the TDX DEM with Ice, Cloud, and land Elevation 122 

Satellite (ICESat) laser altimeter measurements in areas not covered by ice or forest generated an 123 

LE90 error of only 0.88 m, which was much lower than the error specified by the mission 124 

(Rizzoli et al., 2017).  Boulton and Stokes (2018) demonstrated that the ALOS DEM 125 

performance in geomorphological analysis of river networks within mountain landscapes was 126 

superior to those derived from SRTM, ASTER, or TDX DEMs.  Recently, Gesch (2018) 127 

compared the vertical errors of SRTM, ASTER, ALOS, and TDX DEMs and examined their 128 

effect on mapping coastal inundation caused by sea level rise at seventeen sites along the U.S. 129 

coasts. However, to derive a general conclusion, more studies on the performance of these DEMs 130 

in depicting coastal inundation zones in different geographic areas need to be conducted.  The 131 

questions of what effect DEM errors have on the delineation of flood areas, and which DEM data 132 

set is the best option for quantitative analysis of flood risk caused by storm surge and sea level 133 

rise must be answered before TDX or ALOS DEMs are used to map coastal flood risk.  Because 134 

high-accuracy LiDAR data are only available for limited coastal areas of Hispaniola, composed 135 

of Haiti and the Dominican Republic, the island is an ideal location to test the application of 136 

global DEMs for mapping the coastal flood zone.  The objectives of this paper are therefore to 137 

(1) estimate the accuracy of SRTM, ASTER, ALOS, and TDX DEMs in low-lying coastal areas 138 
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of Hispaniola by comparing DEMs with GPS and LiDAR measurements, (2) examine whether 139 

filtering methods for removal of buildings and trees can improve the generation of DTMs from 140 

TDX DEMs, and (3) assess the effect of elevation errors of DEMs on mapping coastal 141 

inundation areas, enabling the substitution of TDX DTMs for LiDAR DTMs in modeling coastal 142 

inundation to be evaluated. 143 

 144 

2. Study Area and Data 145 

2.1. Study Area 146 

Hispaniola is the second largest island in the Caribbean with an area of approximately 75,000 147 

km2 and a population of 22 million (United Nations, 2017).  The topography is dominated by a 148 

series of mountains and intervening valleys oriented in the NW- SE direction, and elevations 149 

range from lake bottoms 40 m below sea level to mountains more than 3,000 m high (Rodriguez 150 

and Barba, 2009; Wilson et al., 2001).  The island experiences frequent tropical cyclones due to 151 

its central location in the path of hurricanes that originate from West Africa and reach the 152 

Caribbean Sea.  Historically, hurricanes have generated high storm surge and large waves along 153 

the coast of Hispaniola.  Low-lying coastal areas such as Port-au-Prince, Gonaives, Cap-Haitien, 154 

Matancitas, Bebedero, San Pedro De Macoris, and Azua are vulnerable to storm surge flooding 155 

(Fig. 1).  For example, during Hurricane David (1979) a 6 m storm tide (surge + wave setup + 156 

wave runup + tide) inundated most coastal highways from Santo Domingo to Las Americas 157 

International Airport, including the airport itself, threatening the lives of coastal residents and 158 

tourists (personal communication, Miguel Campusao, Oficina Nacional de Meteorología, The 159 

Dominican Republic).   160 

 161 
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2.2. SRTM DEM 162 

NASA’s void-filled SRTM DEM, with a resolution of 1 arc-second (~30 meters at the Equator), 163 

was utilized in this study.  SRTM DEMs are 16 bit signed integers, referenced horizontally to the 164 

World Geodetic System 1984 (WGS84) and vertically to the Earth Gravitational Model 1996 165 

(EGM96).  It is noteworthy that the C-band SAR was employed by the SRTM sensor to measure 166 

the height of ground and non-ground features across the Earth’s surface.  Since C-band wave 167 

cannot penetrate dense vegetation or buildings, SRTM DEMs represent elevations between the 168 

bare ground and canopy top.  The accuracy of the 30 m SRTM DEM is specified as < 16 m 169 

absolute vertical elevation error and < 10 m relative vertical elevation error at the 90% 170 

confidence level (Farr et al. 2007).  By comparing SRTM elevations with GPS measurements, 171 

Rodriguez et al. (2006) demonstrated that absolute elevation errors of SRTM at the 90% quantile 172 

ranged from 5.6 m to 9.0 m. 173 

 174 

2.3. ASTER DEM 175 

The ASTER DEM version 2 is a global one arc-second elevation dataset that was released in 176 

October 2011 by METI, Japan and NASA.  The ASTER DEM was generated using optical 177 

imagery of 15 m resolution collected in space with the METI ASTER sensor mounted on 178 

NASA's Terra satellite (Abrams et al., 2010).  Construction of the ASTER DEM relies on the 179 

correlation of stereoscopic image pairs (Wolf et al., 2000).  Compared to ASTER DEM version 180 

1, released in June 2009, the version 2 DEM improved spatial resolution, increased horizontal 181 

and vertical accuracy, and provided better water body coverage and detection by using 260,000 182 

additional stereo-pairs (Tachikawa et al., 2011a).  The elevations of ASTER DEMs are 16 bit 183 

signed integers, referenced horizontally to WGS84 and vertically to EGM96.  During an 184 
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observation period of more than seven years (2000–2007), about 1,260,000 scenes of 185 

stereoscopic DEM data sets, each covering an area of 60 km × 60 km, were collected, with the 186 

topography of most regions being sampled several times.  The RMSE of ASTER elevations was 187 

estimated to be 8.68 m (Tachikawa et al., 2011b). 188 

 189 

2.4. ALOS DEM 190 

The ALOS was launched by JAXA in collaboration with commercial partners NTT DATA Corp. 191 

and the Remote Sensing Technology Centre of Japan (RESTEC) in 2013 (Tadono et al. 2014; 192 

Takaku et al. 2014).  A Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM), 193 

an optical sensor on board of ALOS, was operated from 2006 to 2011, using PRISM stereo 194 

image pairs with a resolution of 2.5 m to generate a global DEM between latitudes 800 N and 800 195 

S (Takaku and Tadono, 2009).  NTT DATA and RESTEC have distributed fine resolution DEMs 196 

with an approximate 5 m pixel size commercially.  JAXA generated 10×10 tiles of one arc second 197 

(~30 m) DEMs by resampling the 5 m ALOS DEMs, and released these products to the public in 198 

2016 (Tadono et al., 2016).  JAXA upgraded ALOS DEM to version 2.1 in 2017 199 

(http://www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm), filling in the elevations of water, low 200 

correlation, cloud, and snow pixels (Takaku and Tadono, 2017).  Average and median elevations 201 

were produced for 30 m ALOS DEMs by averaging or selecting the median of the elevations of 202 

49 (7×7) pixels of 5 m DEM elevations.  The average DEM elevations used in this study are 16 203 

bit signed integers, referenced to the WGS84 horizontal datum and EGM96 vertical datum.  204 

Mean, standard deviation, and RMSE of ALOS DEMs versus 5,121 control points distributed 205 

across127 image tiles were -0.44 m, 4.38 m, 4.40 m, respectively (Takaku et al., 2016). 206 

 207 



10 

2.5. TDX DEM 208 

The DLR, in partnership with private industry, launched the TDX DEM mission from 2010 to 209 

2015 to generate a global DEM between latitudes 900 N and 900 S (Rizzoli et al., 2017; Wessel, 210 

2016; Zink et al., 2014).  The TDX twin X-band SAR sensors operated in a bistatic mode, 211 

utilizing a strip-map mode with a resolution of 3 m, a swath width of 30 km, and slant angles of 212 

300-500 to derive elevations of the Earth’s surface (Gruber et al., 2012; Krieger et al., 2007).  The 213 

pixel spacing of the TDX DEM is 0.4 arc seconds (about 12 m) in the latitudinal direction, and 214 

varies in the longitudinal direction from 0.4 arc seconds at the equator to 4 arc seconds above 850 215 

N/S latitude (Wessel, 2016).  The 32 bit float elevations of the TDX DEM were generated by 216 

averaging all SAR height values falling in a given pixel, using weights based on the standard 217 

deviations of the errors for these heights.  The horizontal datum for the DEM is WGS84-G1150 218 

and the heights of the DEM are ellipsoid heights referenced to WGS84-G1150 (Wessel, 2016).  219 

Comparison of TDX DEM elevations with kinematic GPS data derived by driving vehicles 220 

across all continents and elevations of GPS survey benchmarks covering the entire U.S indicated 221 

that LE90s were 1.9 m for kinematic GPS and 2.0 m for GPS benchmarks, respectively (Wessel 222 

et al., 2018).  Fifteen 10×10 TDX DEM tiles that were collected from 2011 to 2014 cover the 223 

island of Hispaniola. 224 

 225 

2.6. LiDAR Data 226 

In order to map the damage and fault movement due to a magnitude 7.0 earthquake that impacted 227 

Haiti in January 2010, LiDAR data were collected and processed by Rochester Institute of 228 

Technology under sub-contract to ImageCat Inc. (Van Aardt et al., 2011) (Fig. 1).  The data 229 

collection effort was sponsored by the Global Facility for Disaster Reduction and Recovery 230 
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hosted at The World Bank.  The LiDAR surveys covered an 838 km2 area around Port-au-Prince, 231 

Haiti, with a measurement density of 3.4 points per square meter.  Three dimensional LiDAR 232 

data, reported in the horizontal WGS84 Universal Transverse Mercator (UTM) coordinate 233 

system and based on the EGM96 vertical datum, were distributed in binary LASer (LAS) format 234 

(https://www.asprs.org/divisions-committees/lidar-division/laser-las-file-format-exchange-235 

activities, accessed 20 January 2019) and were downloaded from Open Topography 236 

(www.opentopography.org, accessed 3 November 2018).  In the downloaded LAS dataset, the 237 

ground and non-ground LiDAR points were labeled with different class codes. 238 

 239 

2.7. Ground GPS Surveys 240 

Real Time Kinematic Global Positioning System (RTK GPS) surveys were conducted in April, 241 

2016 at three sites within the Dominican Republic: Pedernales, Samana, and Sanchez, (Fig. 1).  242 

The survey points were determined using a systematic, staggered-start point sampling method 243 

(Franzen et al., 2011) within the square boundary of an SRTM grid cell to capture elevation 244 

changes within the cell.  First, the sample locations started at the upper left vertex of the square 245 

grid cell and were planned at 0, 10, 20, and 30 m using a sample interval of 10 m along the x 246 

direction, thereby forming the first row of samples.  Next, the y values of second row samples 247 

were derived by subtracting the y coordinates of first row samples by 5 m, and the sample 248 

locations were planned at 5, 15, and 25 m by alternating the starting position at half the sample 249 

interval along the x direction.  Third, in addition to decreasing y values by 5 m along the y 250 

direction for each row, the third and fourth rows of x coordinates were planned in the same way 251 

as the first and second rows, respectively.  This process was repeated until the y coordinates of 252 

the samples reached the bottom of the square boundary of the SRTM grid cell.  The GPS data 253 
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were collected by surveyors at locations within 10 cm circles around the predefined sampling 254 

points using rod-mounted RTK GPS rovers.  If a sample point happened to be in an area with 255 

poor GPS reception during the survey, a point closest to the sample location was taken and 256 

labelled appropriately.  This method was continued until all points at each site were completed, 257 

or until location conditions (trees, buildings, etc.) prevented further data collection. 258 

 259 

For each sampling site, two control points were established for differential GPS correction, and 260 

simultaneous static GPS observations were recorded for a minimum of 8 hours during the course 261 

of the surveys.  The static GPS records for control points were processed utilizing the National 262 

Geodetic Survey Online Positioning User Service (OPUS) that created baselines from 263 

Continuously Operating Reference Stations (CORS).  In total, 2,287 GPS points were surveyed 264 

at three sites with horizontal coordinates in the WGS84 UTM Zone 19N system, and ellipsoidal 265 

heights relative to the International Terrestrial Reference Frame (ITRF) 2008 vertical datum.  266 

 267 

3. Methods 268 

3.1. Datum Conversion 269 

In order to make a consistent comparison of LiDAR and GPS surveys with SRTM, ASTER, 270 

ALOS, and TDX DEMs, all measurements must refer to the same horizontal coordinate system 271 

and vertical datum.  Since there is no reliable local datum available for Hispaniola (Mugnier 272 

2005), all data were converted to the WGS84 UTM Zone 19N coordinate system with a vertical 273 

datum of EGM2008 (Pavlis et al., 2012) in units of meters using the National Geospatial Agency 274 

(NGA) Conversion tool (http://earth-275 

info.nga.mil/GandG/wgs84/gravitymod/egm2008/egm08_wgs84.html, accessed 3 November 276 
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2008) and the ArcGIS Projection tool.  For SRTM, ASTER, and ALOS DEMs, the horizontal 277 

and vertical coordinates of each grid cell referenced to WGS84 and EGM96, respectively, were 278 

first output as a text file.  Elevations were then transformed to ellipsoid heights relative to 279 

WGS84, and to heights with respect to EGM2008 using the NGA Conversion tool.  Finally, the 280 

EGM2008 heights in ASCII format were converted to raster in ArcGIS and projected to the 281 

UTM coordinate system.  TDX DEMs with horizontal coordinates and ellipsoid heights relative 282 

to WGS84 were converted to the UTM coordinate system with a vertical datum of EGM2008 283 

through steps 2 and 3 outlined above.  For LiDAR data in the UTM coordinate system with a 284 

vertical EGM96 datum, the 12 m and 30 m digital surface models (DSMs) were first generated 285 

by simply averaging first return points in a grid cell using the LAS Dataset to Raster tool in 286 

ArcGIS. This reduced computation time, which was critical because the averaging process 287 

involved about 2.8 billion points (about 3.4 points per square meters), while guaranteeing the 288 

quality of DSMs.  The 12 m and 30 m DTMs were generated by inverse distance weighted 289 

interpolation of ground LiDAR points to compute the elevations of grid cells occupied by 290 

buildings and vegetation.  The DSMs and DTMs were then transformed to the WGS84 291 

coordinate system in ArcGIS and converted to the UTM coordinate system with the EGM2008 292 

vertical datum, following the same procedure as used to transform SRTM DEMs.  The ellipsoid 293 

heights of the GPS measurements in reference to ITRF 2008 were converted to EGM2008 294 

heights using the NGA Conversion tool for transforming WGS84 ellipsoid heights to EGM2008 295 

heights, because the ITRF2008 and WGS84 ellipsoid heights coincided to approximately the 10 296 

cm level (ITRF, 2013). 297 

 298 
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3.2. Generation of TDX DTMs by Filtering and Interpolation 299 

The SRTM, ASTER, ALOS, and TDX DEMs include canopy and building measurements 300 

because electronic and magnetic waves recorded by radar or optical sensors cannot penetrate 301 

fully through vegetation and buildings to reach the ground.  Hence, the SRTM, ASTER, ALOS, 302 

and TDX DEMs actually represent DSMs that include the elevations of non-ground features.  303 

The terms DEM and DSM were used interchangeably in this study to keep the DEM terminology 304 

used by many agencies providing the data.  To improve the accuracy of mapping storm surge 305 

flooding using these DEMs, non-ground elevations must be removed, especially in low-relief 306 

coastal areas.  Because of their coarse horizontal (30 m) and vertical resolutions (1 m), this is a 307 

challenging task with SRTM, ASTER, and ALOS DEMs.  However, the higher spatial and 308 

vertical resolutions of the TDX DEM make it possible to remove vegetation and building 309 

elevations based on elevation changes within a neighborhood (local window) (Geiß et al., 2015).  310 

We used four filtering methods for airborne LiDAR data, including the elevation threshold with 311 

expanding window (ETEW) filter, the progressive morphological filter with one dimensional 312 

(PM) or two dimensional (PM2D) structure elements, and the adaptive triangulated irregular 313 

network (ATIN) filter (Axelsson, 2000; Cui et al., 2013; Zhang, 2007; Zhang et al., 2003; Zhang 314 

and Whitman, 2005) to remove non-ground pixels in TDX DEMs.  The horizontal (x and y) and 315 

vertical (z) coordinates of LiDAR points are used by these filters to generate ground 316 

measurements.  Thus, prior to filtering, TDX DEMs were converted into points based on the 317 

horizontal coordinates and elevations of grid cells using Python (www.python.org).  The 318 

parameters for the ETEW method included an initial square window size of 10 m, a slope of 319 

0.07, a window series of 1, 2, 4, 8, and 16 cells for five iterations, and height difference 320 

thresholds of 1.4, 2.8, 5.6, 11.2, and 22.4 m corresponding to the window series.  The parameters 321 
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for the ATIN method employed an initial square window size of 200 m, a height difference 322 

threshold of 0.4 m, and an angle threshold of 3 degrees.  For embarrassingly parallel 323 

computation, the dataset was subdivided into  2000 m × 2000 m tiles with overlap buffers of 200 324 

m.  The PM method used a cell size of 10 m, a window series of 1, 2, 4, and 8 cells, and height 325 

difference thresholds of 0.25, 0.5, 1.1, and 1.2 m corresponding to the window series without 326 

rotation of raw data.  The PM2D method used a cell size of 10 m, a window series of 10, 20, 30, 327 

and 40 cells, and height difference thresholds of 3, 6, 12, and 18 m corresponding to the window 328 

series without rotation of the raw data. The details of these filtering parameters can be found in 329 

Zhang (2007) and Zhang and Whitman (2005). 330 

 331 

The DTMs were generated by interpolating the ground pixels of the filtered TDX DEMs, using 332 

Empirical Bayesian Kriging (EBK) in ArcGIS.  The EBK method was selected for the 333 

interpolation because (1) EBK has the ability to smooth out the outliers in the filtered pixels, and 334 

(2) the parameters used by EBK are automatically optimized by sub-setting the large dataset and 335 

using a spectrum of semivariograms generated through an iterative simulation process, instead of 336 

using a single semivariogram as in traditional kriging methods (Krivoruchko, 2012; Mirzaei and 337 

Sakizadeh, 2016; Roberts et al., 2014).  The semivariogram that quantifies the spatial 338 

dependence in the filtered pixels is a function of the distance and direction separating pairs of 339 

pixels. 340 

 341 
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3.3. Elevation Accuracy Analysis 342 

The vertical errors of the DEMs were quantified by comparing individual test DEM elevations 343 

(yi) and reference LiDAR or GPS elevations (xi) at sample points (i) using the following metrics 344 

(Davis, 2002; Höhle and Höhle, 2009; Wessel et al., 2018): 345 

Mean Error:   
� = 1� ���� − ��� = 1��
��� � ∆ℎ�

�
���                                                                        �1� 346 

Mean Normalized Bias:   
�# =  1� � ∆ℎ��� ∙ 100%                                                                 �2��
���  347 

Root Mean Square Error:   -
.� =  /1� � ∆ℎ�0
�

���                                                                      �3� 348 

Standard Deviation:   .4 =  / 1� − 1 ��∆ℎ� − 
��0�
���                                                              �4� 349 

Median �50% quantile�:  
4 =   7∆8�0.5� = :∆8                                                                    �5� 350 

Normalized Median Absolute Deviation:   �
=4 = 1.4826 ∙ :@ABCD�|∆ℎ� − :∆8|�    �6� 351 

Absolute error at the 90% quantile:   H�90 = 7|∆8|�0.9�                                                        �7� 352 

where Δhi is the difference between yi and xi and N is the total number of samples.  NMAD is a 353 

nonparametric estimate for SD and is equal to SD if the difference follows a normal distribution. 354 

The linear regression: 355 

�� = C + K�� + L�                                                                                                                                  �8� 356 

where εi is the random error following a normal distribution.  The R-squared value of the linear 357 

regression equation was calculated by  358 

-0 = ∑ �C + K�� − �N�0����∑ ��� − �N�0����                                                                                                                �9� 359 
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where ym is the mean of yi.  The p-value, that is the two-sided probability value of the null 360 

hypothesis that the slope of the regression equation is zero (Davis, 2002), was employed to 361 

examine the significance of the regression parameter.  A low p-value (e.g., < 0.01) indicates that 362 

the null hypothesis may be rejected. 363 

 364 

For accuracy analysis based on LiDAR measurements, these error measures were calculated 365 

using elevation pairs from 30 m ASTER, SRTM, and ALOS DEMs versus 30 m LiDAR DSMs, 366 

and elevation pairs from 12 m TDX DEMs and DTMs versus 12 m LiDAR DSMs and DTMs, 367 

respectively, for overlapping areas.  For accuracy analysis based on GPS measurements, the 368 

mean and standard deviation of the GPS elevations within a 30 m grid cell of ASTER, SRTM, 369 

and ALOS DEMs, or within a 12 m grid cell of TDX DEMs and DTMs in the overlapping area 370 

were calculated.  Error measures were then calculated using elevation pairs from 30 m DEMs 371 

versus mean values of associated GPS measurements, and elevation pairs from 12 m DEMs and 372 

DTMs versus associated mean values of GPS measurements.  If the number of GPS points within 373 

a grid cell was less than five, the grid cell and associated GPS measurements were excluded from 374 

comparison to ensure sufficient samples within a grid cell. 375 

 376 

3.4. Delineation of Potential Flood Area  377 

The height of short-term floods caused by tides, storm surges and wave runups reaches about 10 378 

m for Category 5 hurricanes, based on preliminary numerical modeling by the Storm Surge Unit 379 

at the National Hurricane Center.  The potential long-term flood height at the end of the 21st 380 

century caused by the worst sea level rise scenario was estimated to be about 2-3 m (Bamber et 381 

al., 2009; Sweet et al., 2017).  Therefore, the flood risk along the Hispaniola coast from the 382 
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combination of tides, storm surges, wave runups, and sea level rise were categorized into high 383 

(locations at 0-3 m elevation), moderate (3-5 m elevation), low (5-10 m elevation), and 384 

extremely low (10-15 m elevation) risk categories.  Since the inundated area for a rise of h in 385 

water level is equivalent to the coastal area below elevation h but above current sea level 386 

(EGM2008) if both sea level and elevation are referenced to the same vertical datum, flood risk 387 

areas corresponding to these categories were derived using a polygon formed by the shoreline 388 

and the contours corresponding to elevation h, following the procedure developed by Zhang et al. 389 

(2011). 390 

 391 

In estimating the uncertainty of the flood risk maps generated using DTMs, it is important to 392 

quantify the horizontal position error of contour lines caused by vertical elevation uncertainty.  393 

The horizontal errors from TDX DTMs were examined by comparing the TDX and LiDAR 394 

contour lines in the same area, following a procedure used to map shoreline and beach volume 395 

change (Leatherman and Clow, 1983; Robertson et al., 2018; Zhang and Robertson, 2001).  First, 396 

an offshore baseline that was approximately parallel to the contour lines was created in ArcGIS.  397 

Second, transects perpendicular to the baseline at a given interval (e.g., 100 m) were generated.  398 

Third, the distances between the contour lines and the baseline along transects were calculated to 399 

derive the differences between TDX and LiDAR contour lines (Fig. 2a).   400 

 401 

The derivation of contour line position errors by comparing TDX and LiDAR contours only 402 

works for areas where both data sets exist.  This method cannot be applied in areas where 403 

LiDAR data are not available.  An alternative is to apply the elevation error derived by a 404 

comparison between TDX and LiDAR DTMs in overlapping coastal areas to the remaining 405 
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coastal areas in Hispaniola, under the assumption that the elevation error of the remaining area is 406 

the same as the error in the overlapping area.  Given a TDX contour (yc), the systematic offset 407 

(m), the random error (σ) of the differences between TDX (yi) and LiDAR DTM (xi) elevations, 408 

and the vertical error (δ) of LiDAR measurements, the lower (hl) and upper (hu) boundaries of 409 

the true contour (hc) are estimated by: 410 

ℎO = �P + : − QR − QSℎT = �P + : + QR + QS                (10) 411 

where parameters σ and δ are independent, c is a constant (e.g., 2 or 3), and σ can be estimated 412 

by SD, RMSE, NAMD, or LE90.  A quality check for LiDAR data in the study area is not 413 

available.  Since the RMSE error of an airborne LiDAR survey is usually lower than 0.15 m 414 

(Shan and Toth 2008), δ was set to be 0.15 m in this study.  The flood zone and associated zones 415 

of uncertainty were estimated by the inundated areas between the shoreline and hl, h, and hu 416 

contours from TDX DTMs, given a rise of h in water level. 417 

 418 

4. Results 419 

4.1. Satellite DEMs and DTMs versus GPS measurements 420 

Comparison of GPS measurements at Pedernales, Samana, and Sanchez with ASTER DEMs 421 

indicated that ME was about 4.83 m and MNB reached 654.4% (Table 1).  It is noteworthy that 422 

MNB is sensitive to elevation differences at low elevations, and overestimates or underestimates 423 

indicated by MNB are not bounded by 100% as indicated by Equation 2.  The ASTER DEM 424 

elevations were scattered between about 0 to 22 m while GPS elevations varied from 0 to 4 m 425 

(Fig. 3), which implied that ASTER DEM elevations largely overestimated the topographic 426 

elevations at the three locations, resulting in the large SD of 6.96 m, RMSE of 8.44 m, and LE90 427 

of 14.29 m.  Compared to the ASTER DEM elevations, the scatter of SRTM elevations versus 428 
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GPS elevations was reduced, but still quite large, generating an ME of 2.83 m and MNB of 429 

277.0%.  SD, RMSE, and LE90 of SRTM elevations were 2.58, 3.82, and 5.85 m, respectively, 430 

less than half of ASTER’s values.  SD, RMSE, and LE90 of ALOS elevations were further 431 

reduced to 1.87, 2.08, and 3.64 m, respectively.  These values together with a smaller ME of 0.92 432 

m and an MNB of 90.8% implied that ALOS elevations approximated Earth’s surface elevations 433 

better than ASTER and SRTM at the three sites.  With the smallest ME of 0.71 m and MNB of 434 

39.4% in combination with the smallest SD of 1.59 m, RMSE of 1.74 m, and LE90 of 3.20 m, 435 

TDX DEM elevations estimated surface elevations best among the four data sources.   436 

 437 

The more TDX versus GPS elevation points were above the 1:1 line than below it, indicating that 438 

there was an offset of TDX elevations (Fig. 3).  This offset existed because the TDX DEMs 439 

includes the elevations of non-ground pixels.  Therefore, it is necessary to remove non-ground 440 

pixels from TDX DEMs to produce DTMs.  The DTMs derived by filtering TDX DEMs using 441 

the ETEW, ATIN, PM, and PM 2D methods and interpolating identified ground pixels generated 442 

a smaller set of SD, RMSE, and LE90 values in comparison with values for the unfiltered TDX 443 

DEM (Table 1).  The scatter plots for DTM versus GPS elevations showed that the ETEW and 444 

PM methods produced less scatter among data points in comparison with the ATIN and PM2D 445 

methods (Fig. 4).  The DTM derived from the PM method generated the smallest SD of 1.03 m, 446 

RMSE of 1.06 m, and LE90 of 1.73 m among four DTMs. 447 

 448 

ASTER, SRTM, ALOS, and unfiltered TDX DEMs, and TDX DTMs were compared with GPS 449 

measurements along a profile at Samana to illustrate the spatial variation in the differences 450 

between satellite and GPS based elevations (Fig. 5).  Between the distances of 0-250 m from 451 
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shore to inland along the profile, ASTER elevations were much higher than GPS elevations and 452 

the lowest ASTER elevation at 145 m along the profile differed by about 4 m from the GPS 453 

elevations.  Hence, the application of filter methods to ASTER DEMs would not improve the 454 

estimates much because of large errors in DEM elevations and coarse horizontal and vertical 455 

resolutions.  SRTM and ALOS DEM elevations along the profile were closer to GPS elevations, 456 

outperforming ASTER DEMs.  However, over- or underestimates of topographic elevations 457 

ranging from 2 to 4 m by SRTM and ALOS were observed along the profile.  The TDX DTMs 458 

generated by the PM and ETEW methods were closest to GPS measurements between the 459 

distances of 0-250 m along the profile.  Note that the elevation change caused by a small pit 460 

adjacent to the shoreline as indicated by GPS measurements was not captured by any of the four 461 

DEMs.  462 

 463 

4.2. Satellite DEMs and DTMs versus LiDAR measurements 464 

Comparison of satellite DEMs and DTMs with GPS measurements in three areas adjacent to the 465 

shoreline illustrated error measures below 7 m elevation (Figs. 3 and 4).  Although the accuracy 466 

of kinematic GPS data as the reference was high, the coverage of spatial variation in topography 467 

was limited because of the intensive labor and high costs required to obtain GPS measurements 468 

compared to a remote sensing method.  Hence, the LiDAR measurements covering 76 km of 469 

shoreline and 150 km2 coastal areas were used to further examine the accuracy of satellite 470 

DEMs.  Only pixels below the 20 m contour of the LiDAR DTM were used to conduct the 471 

comparisons, because even the most aggressive estimate of the potential coastal flooding caused 472 

by storm surge and sea level rise within 100 years does not exceed this height.   473 

 474 
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ASTER DEM generated the largest SD of 3.46 m (Table 1), which is consistent with the 475 

distribution of elevation differences between ASTER and LiDAR (Fig. 6a) and the relatively 476 

large scatter of data points for ASTER versus LiDAR elevations (Fig. 7).  However, ME, RMSE, 477 

and LE90 of ASTER were smaller than those of SRTM and ALOS (Table 1) because of large 478 

positive offsets of SRTM and ALOS elevations from LiDAR elevations (Fig. 7).  The Q-Q plot 479 

showed that the distribution for elevation differences between ASTER and LiDAR approximated 480 

a normal distribution (Fig. 6b), therefore, the values of SD and NAMD were almost the same 481 

(Table 1).  TDX DEM elevations produced the least scatter (Fig. 7) among the four satellite data 482 

sets, leading to the smallest SD of 1.88 m, RMSE of 2.27 m, and LE90 of 3.66 m.  The scatter 483 

plot for TDX versus LiDAR in Fig. 7 exhibited a positive offset and the histogram for the 484 

difference between TDX and LiDAR DEM elevations showed a severe skewness toward the 485 

positive value (Fig. 6a), far from the normal distribution as indicated by the Q-Q plot (Fig. 6e).  486 

The differences of SRTM and ALOS elevations versus LiDAR elevations showed less scatter 487 

and lower similarity to a normal distribution than ASTER versus LiDAR (Figs. 6c and 6d), but a 488 

much higher similarity than TDX versus LiDAR.   489 

 490 

The error measures for the differences between LiDAR and TDX DTM elevations indicated that 491 

the ETEW, ATIN, PM, and PM2D methods improved the accuracy of TDX elevations (Table 1).  492 

The PM filter generated the best result, with a SD of 1.16 m, RMSE of 1.30 m, and LE90 of 2.02 493 

m, representing a 43% reduction in vertical error compared to the unfiltered TDX elevation data 494 

in terms of RMSEs.  The ME and MNB of the DTM from the PM filter method were 0.60 m and 495 

8.5%, a 53% drop in ME and 57% drop in MNB; this indicated that a large portion of the offset 496 

error in unfiltered TDX DEMs was removed by the filter.  The scatter plots for the PM-based 497 
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DTM elevations versus LiDAR elevations also showed that the offset of the unfiltered TDX 498 

DEMs with elevations below 15 m was removed (Fig. 8).  Although ETEW, ATIN, and PM2D 499 

produced larger SD, RMSE, and LE90 values, these three filters also removed most of the offset 500 

below 15 m (Fig. 8).  An under-filtering of non-ground features at higher elevations was evident 501 

in Fig. 9, which displays elevation variations of unfiltered and filtered TDX data along a profile 502 

near Port-au-Prince.  The dense trees and buildings on the land surface above 12 m were largely 503 

removed by the filters, but there were varied offsets between TDX and LIDAR DTMs.  The 504 

major challenge here was that the pixels of TDX DEMs did not reach the ground over a large 505 

portion of the profile with higher elevations.  For example, the TDX DEM data did not capture 506 

ground elevations between the distances of 4400 and 5000 m as indicated by unfiltered TDX and 507 

LiDAR elevations in Fig. 9, making it difficult for the filters to derive ground elevations within 508 

this interval.  It is also noteworthy that ASTER, SRTM, and ALOS elevations largely over-509 

estimated the ground elevations under 8 m even though there were few non-ground features in 510 

this area, illustrating the poor data quality of ASTER, SRTM, and ALOS DEMs in areas near the 511 

shore.  The comparison of unfiltered and filtered TDX and LiDAR data showed that the filter did 512 

not improve the skewness of elevation differences much (Figs. 6a and 6f) or remove all non-513 

ground features in TDX DEMs, producing a DTM that looks rougher than the DTM from filtered 514 

LiDAR data (Fig. 10). 515 

 516 

4.3. Comparison of inundation areas from satellite DEMs and DTMs, and LiDAR DTMs 517 

The inundation areas from ASTER, SRTM, and ALOS DEMs for a scenario of 3 m water level 518 

rise differed by more than 90% from the inundation area derived from the LiDAR DTM (Table 519 

2).  The negative sign of the difference in percentage in the table indicates that inundation areas 520 
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from ASTER, SRTM, and ALOS DEMs greatly underestimated the inundation extent.  The 521 

difference in inundation areas for a scenario of 5 m water level was reduced but still quite large, 522 

with a range from -93% to -73%.  It is obvious that inundation extent was not depicted accurately 523 

with such large errors (Fig. 11).  Under this scenario, the ASTER DEM produced the largest 524 

error, incorrectly projecting almost no inundation in the coastal area around Port-au-Prince.  As 525 

the magnitude of water level rise increased, the differences in inundation areas became reduced 526 

(Table 2).  The overall performances of ASTER, SRTM, and ALOS DEMs were poor, and none 527 

of the three was consistently better than the others in terms of the inundation areas for 3, 5, 10, 528 

and 15 m increases in water level. 529 

 530 

The inundation areas from the TDX DTM produced much smaller errors, ranging from -13% for 531 

3 m water level rise to -4% for 15 m water level rise (Table 2).  The negative values of the 532 

difference percentages indicate that the TDX DTM also underestimated the inundation area as 533 

illustrated in Fig. 12.  Similar to the variation in the errors of inundation areas for ASTER, 534 

SRTM, and ALOS DEMs, the errors for the TDX DTM became smaller as the magnitude of 535 

water level increased (Table 2).  Errors in the areas of high, moderate, low, and extremely low 536 

risk also decreased as the magnitude of water level rise increased because the underestimates of 537 

lower and upper boundaries of a risk zone tended to cancel each other out, resulting in small 538 

errors for the calculated areas (Table 2).  The comparison of TDX and LiDAR inundation 539 

contours for the most landward positions of inundation under hypothetical scenarios showed that 540 

the TDX DTM underestimated inundation extent, as indicated by MEs of -75.0 to -49.2 m and 541 

MNBs of -6.5% to -1.7% (Table 1).  The SDs, RMSEs, and LE90s of the differences in the 542 

inundation contours for 3, 5, 10, and 15 m water level rises ranged from 104.4-144.5, 115.3-543 
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162.7, and 172.9-232.8 m.  In contrast to the differences in inundation areas from TDX and 544 

LiDAR DTMs, the differences in the inundation contours did not decline with an increase in the 545 

magnitude of water level rise.  As expected, the larger differences in inundation contours 546 

occurred along shoreline sections with gentle slopes, while smaller differences occurred in 547 

shoreline sections with steep slopes (Fig. 2b).   548 

 549 

The error in inundation contours results in uncertainty in the map for potential flooding given a 550 

magnitude of storm surge and sea level rise.  The effect of this error can be estimated using 551 

Equation (10).  Since the differences between TDX and LiDAR DTMs did not follow a normal 552 

distribution (Fig. 6), the systematic offset (m) was estimated using the MD value, the random 553 

error (σ) was estimated using NAMD, δ was set to be 0.15 m, and c was set to be 2.  One 554 

example of the seaward and landward extent attributable to errors between TDX and LiDAR 555 

DTMs for the 5 m inundation contour is illustrated in Fig. 12, where the difference zone between 556 

TDX and LiDAR inundation contours was bracketed by the boundaries of uncertainty. 557 

 558 

5. Discussion 559 

5.1. Accuracy Analysis 560 

The high accuracy of TDX DEM elevations versus GPS measurements that we observed (RMSE, 561 

1.74 m; LE90, 3.20 m: Table 1) matches well with the accuracy assessment of TDX DEM with 562 

GPS data at a global scale (Wessel et al., 2018), who found RMSE of 1.71 m and LE90 of 2.59 563 

m when TDX DEMs were compared with benchmark GPS measurements in areas of medium 564 

development (Table 4 in Wessel et al. (2018)).  Based on aerial photographs (Fig. 1), the land 565 

cover at Pedernales, Samana, and Sanchez GPS sites assessed in our study can be categorized as 566 
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areas of medium development.  By removing non-ground features, TDX DTM derived by the 567 

PM filter resulted in 39% and 46% improvements in RMSE and LE90, respectively, indicating 568 

that similar filtering of TDX DEMs should be conducted whenever possible. 569 

 570 

The RMSE and LE90 from the comparison of TDX DEM elevations with LiDAR measurements 571 

are 2.27 and 3.66 m, respectively, higher than the RMSE and LE90 from GPS measurements 572 

(Table 1).  This is to be expected because the LiDAR measurements cover extensive, 150 km2 573 

areas that are occupied by many types of land cover, including marsh, forest, crop land, and low 574 

to high development.  The LE90 value also agrees with an overall LE90 of 3.49 m derived by 575 

comparing TDX DEMs with more than 144 million ICESat measurements (Rizzoli et al., 2017).  576 

Similar to the GPS surveyed areas, the TDX DTM from the PM filter improved the elevation 577 

accuracy by 43% and 45% in terms of RMSE and LE90, respectively.   578 

 579 

 580 

The inundation polygons depicted by TDX and LiDAR DTMs matched well spatially (Fig. 12) 581 

and the TDX and LiDAR inundation contours for these scenarios differed by distances that 582 

averaged less than 75 m.  Error measures estimated from the coastal area around Port-au-Prince, 583 

Haiti can be used to quantify the flood mapping error using TDX DTMs for the remaining areas 584 

of Hispaniola, under the assumption that the errors are likely to be similar.  This is a reasonable 585 

assumption because the LiDAR surveyed area includes most coastal land cover types in 586 

Hispaniola.  Transects of 1,700 m length along a profile near Port-au-Prince (Fig. 9) indicated no 587 

systematic offset between elevations from TDX DEM and LiDAR DSM in open coastal areas.  588 

Several methods to map the uncertainty for coastal inundation have been proposed (Gesch, 2009; 589 
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West et al., 2018).  The method used in this study (i.e, Equation 10) resembles the method 590 

developed by Gesch (2013), except that it also considers the systematic elevation offset in the 591 

filtered TDX DEM.  592 

 593 

It is important to conduct error analysis by comparing TDX DEM elevations with GPS and 594 

LiDAR measurements with higher accuracy.  The error measures allowed us to examine whether 595 

there was an offset in TDX DEMs, and to produce lower and upper boundaries for the flood 596 

maps due to elevation uncertainty.  Kinematic GPS surveying is a convenient way to collect 597 

accurate elevation data to verify TDX DEMs.  The survey in this study sampled about 20 598 

elevation points within a 30 m × 30 m square.  This method captured the spatial variation in 599 

elevations within a DEM grid cell, but reduced the survey efficiency.  It is probably better to 600 

survey the elevations along profiles perpendicular to contour lines, because sampling points will 601 

cover a large range of elevations.  The airborne LiDAR technology is more effective due to the 602 

large tracts of data collected, which include areas inaccessible to ground surveyors.  However, 603 

the cost and time of LiDAR survey and data processing often prevent the application of LiDAR 604 

in developing countries. 605 

 606 

In contrast to TDX DEM, ASTER, SRTM, and ALOS DEMs produced larger RMSE and LE90 607 

errors and the performances of these three DEMs were not consistent.  ALOS DEMs achieved a 608 

better accuracy than SRTM and ASTER DEMs in comparison with GPS measurements with 609 

elevations below 7 m, while at LiDAR elevations below 20 m, ASTER had a better accuracy due 610 

to a smaller offset than SRTM and ALOS DEMs.  ASTER, SRTM, and ALOS DEMs generated 611 

larger discrepancies than TDX DTMs in delineation of inundation areas (Table 2) and contours 612 
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(Fig. 11) for 3, 5, 10, and 15 m.  Similar to elevation accuracy, none of the three was consistently 613 

better than the others in the calculation of inundation areas.   614 

 615 

When ASTER and ALOS DEMs from the analysis of stereoscopic optical images as well as 616 

SRTM and TDX DEMs from radar were compared in pairs, both the ALOS sensor, which 617 

generated higher resolution (2.5 m) images than 15 m resolution imagery from ASTER (Abrams 618 

et al., 2010; Tadono et al., 2014), and the TDX sensors, with a longer radar baseline from two 619 

tandem satellites than the baseline from a single antenna in the space shuttle (Farr et al., 2007; 620 

Gruber et al., 2012), improve the elevation accuracy of the data.  When compared on the basis of 621 

GPS measurements, both ALOS versus ASTER DEMs and TDX versus SRTM DEMs showed a 622 

better response to GPS elevation changes (Fig. 3).  The comparison of DEMs with LiDAR 623 

measurements showed a similar pattern (Fig. 7), although ALOS DEM generated a larger RMSE 624 

value than ASTER DEM due to an offset.  This offset can be removed if sufficient elevation 625 

measurements (e.g. from GPS) with higher accuracy at sample sites are available. 626 

 627 

Numerous studies in developing countries have employed open source ASTER and SRTM 628 

DEMs to map the potential flooding that will result from storm surges and sea level rise on a 629 

local scale (Aleem and Aina, 2014; Demirkesen et al., 2007; Ho et al., 2010; Kuleli, 2010; 630 

Pramanik et al., 2015; Refaat and Eldeberky, 2016).  On a global scale, most studies that 631 

document potential flood risk in coastal cities or zones have used SRTM DEMs as well 632 

(Hallegatte et al., 2013; Hinkel et al., 2014; McGranahan et al., 2007).  Such studies suffer the 633 

following common problems: (1) most of them did not conduct accuracy analyses, and (2) 634 

SRTM and ASTER data grossly underestimated inundation areas, especially for coastal lands 635 
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below 5 m elevation.  As a result, the impacted population, property, and facilities in flood-636 

vulnerable areas were also underestimated.  In the coastal area around Port-au-Prince, this 637 

underestimate was remarkable (Table 2 and Fig. 11), as the inundation areas below 5 m from 638 

SRTM and ASTER DEMs were 5 and 15 times smaller, respectively, in comparison with the 639 

LiDAR-based inundation area.  Similar underestimates of inundation areas by SRTM and 640 

ASTER DEMs were also found on the local scale in Nigeria (van de Sande et al., 2012), 641 

Indonesia (Griffin et al., 2015), Poland (Walczak et al., 2016), and England (Yunus et al., 2016), 642 

and on the national level in the U.S. (Kulp and Strauss, 2016).  One could argue that the RMSE 643 

in ASTER and SRTM DEMs can be improved by removing offsets through comparison of 644 

DEMs with reference data of higher accuracy.  Unfortunately, the offsets may not be systematic 645 

as indicated by the scatter plot between ASTER and LiDAR DEMs in Fig. 7.  Even if the offsets 646 

seem systematic, as indicated by scatter plots for SRTM and ALOS versus LiDAR, there is no 647 

guarantee that the offsets estimated at Port-au-Prince could be applied to places other than the 648 

study area.   649 

 650 

In addition, inconsistent performances by ASTER, SRTM, and ALOS DEMs in depicting 651 

inundation areas for low and high water level rise scenarios makes it difficult to select which of 652 

the three is more suitable for mapping potential coastal inundation.  By contrast, the differences 653 

in estimated inundation areas around Port-au-Prince from TDX and LiDAR DTMs show that the 654 

TDX DTM reasonably approximates LiDAR DTM for the inundation areas below 3 m and 5 m 655 

as well as for inundation areas below 10 and 15 m (Table 2), indicating that TDX DTMs, though 656 

not as accurate as LiDAR DTMs, are practical substitutes for mapping coastal inundation.  657 

Hence, we strongly recommend utilizing TDX DEMs for global analysis of sea level rise 658 
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impacts, and for local analysis in developing countries where LiDAR is not economically 659 

feasible, because the TDX DEM is the most accurate global DEM to date.  It is noteworthy that 660 

the RMSE value of 1 m for TDX DTMs in the study area is much larger than the RMSE of 661 

LiDAR DTMs.  The confidence level for mapping minor floods of less than 1 m using TDX 662 

DEMs is low due to this error.  Therefore, caution should be taken when using TDX DTMs to 663 

map potential inundation risk solely owing to sea level rise, which, based on the IPCC 664 

projection, is about 1 m by 2100 for the worst-case scenario (Stocker, 2014).  Gesch (2018) drew 665 

a similar conclusion by assessing the adequacy of TDX DEMs for mapping sea level rise 666 

inundation along the U.S. coasts.  Another hurdle for extensive application of TDX DEMs to 667 

mapping coastal flooding in developing countries is that TDX 12 m DEMs are not freely 668 

available, although DLR released TDX 90 m DEMs to the public in October 2018.  Comparison 669 

of TDX 12 m and 90 m DEMs at Port-au-Prince, Haiti showed that 90 m DEMs captured major 670 

elevation change patterns, but smoothed out many local elevation variations because of 671 

resolution reduction.  Due to this smoothing effect, the filtering of 90 m DEMs probably 672 

provides little improvement of DTM accuracy, thereby greatly increasing uncertainty in 673 

depicting inundation zones. 674 

 675 

5.2. Filtering of TDX DEMs 676 

It has been demonstrated that the DTMs generated by filtering and interpolating TDX DEMs 677 

resulted in approximately 40% improvement in estimates of ground elevation.  Therefore, 678 

filtering methods are needed if TDX DEMs are to be used to map coastal flood hazards 679 

accurately.  Among the four tested filtering methods, the PM filter using a one-dimensional 680 

structure element generated the best results because this filter effectively preserved river banks, 681 
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low coastal cliffs, and gently sloping terrain features such as floodplains within the study area 682 

(Zhang et al., 2003; Zhang and Whitman, 2005).  By contrast, the ETEW and ATIN methods 683 

incorrectly removed ground pixels bordering river banks, as well as low coastal cliffs where 684 

sharp elevation changes occurred.  Likewise, the PM2D filter is less effective in retaining 685 

geomorphic features compared to the PM filter, due to its use of a two-dimensional square or 686 

circular structure element. 687 

 688 

The filtering methods for LiDAR measurements can either be directly applied to the TDX DEMs 689 

(this study) or modified to fit TDX DEMs (Geiß et al., 2015; Schreyer et al., 2016) because these 690 

filters are based on a similar assumption for separation of ground and non-ground pixels.  The 691 

assumption is that changes in the elevations of ground pixels are gradual and spatially correlated 692 

within a local window, while changes in elevations between ground and non-ground features are 693 

abrupt and poorly correlated.  However, due to footprint sizes and data point density, TDX and 694 

LiDAR data differ remarkably in terms of their likelihood of penetrating through vegetation.  695 

LiDAR can reach the ground even in dense coastal forests such as mangroves and tropical 696 

hardwoods because of its small footprint size and high spatial measurement density (Zhang et al., 697 

2008).  By contrast, TDX measurements from the X-band radar wave cannot penetrate through 698 

dense coastal forests to reach the ground, making it impractical to separate ground elevations 699 

from non-ground elevations in these types of land cover.  In heavily-built metropolitan areas, 700 

where streets are not much wider than the 12 m spatial resolution of TDX DEMs, shadow effects 701 

and the mixing of different objects in a TDX DEM pixel also prevent consistent ground 702 

measurements.  In medium-developed and sparse or patchily vegetated areas, ground and non-703 

ground features are generally separable in TDX DEMs (Rossi and Gernhardt, 2013; Schreyer and 704 
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Lakes, 2016), and it is in such landscapes that TDX DEMs can provide reliable DTMs for 705 

mapping flood impacts.  706 

 707 

Even in medium-developed or patchily vegetated areas, the improvement in identification of 708 

ground pixels by modifying the existing filtering method to fit the characteristics of TDX DEMs 709 

deserves further study.  For example, the TDX sensor did not capture the ground measurements 710 

between the distances 4,400 and 5,000 m along a profile near Port-au-Prince (Fig. 9), resulting in 711 

an overestimate of ground elevations in the filtered data.  This overestimate caused 712 

corresponding underestimates of the potential flood areas shown in Fig. 12.  A possible strategy 713 

to handle this large spatial gap in ground measurements is to select high quality, well separated 714 

ground pixels from the TDX DEMs as seed points in the first step of forming the initial ground 715 

pixel set and generating an initial ground surface by interpolating ground pixels.  The next step 716 

would be to iteratively search the candidate pixels and add candidates to the ground set by 717 

comparing the distances from candidate pixels to ground surface.  Manual editing of 718 

automatically selected seed pixels may be needed to ensure that the seeds are reliable because the 719 

effect of the seed pixels is magnified in adding more ground pixels through an iterative process 720 

(Zhao et al., 2016).  The land cover data, especially from satellite platforms such as Sentinel that 721 

collect images with a spatial resolution similar to TDX DEMs, should be incorporated into the 722 

filtering process for selecting seed ground pixels and determining filtering parameters. 723 

 724 

6. Conclusions 725 

The elevation accuracy of ASTER, SRTM, ALOS, and TDX DEMs for Hispaniola were 726 

examined against more than 2,000 RTK GPS measurements in the Dominican Republic and 150 727 



33 

km2 LiDAR data in Haiti to determine if these DEMs are appropriate for mapping coastal flood 728 

risk.  The comparison between DEM elevations and GPS measurements below 7 m elevations 729 

showed that the TDX DEMs achieved the best accuracy, generating the smallest SD of 1.59 m, 730 

RMSE of 1.74 m, and LE90 of 3.20 m.  ASTER DEMs had the lowest accuracy, generating the 731 

largest SD of 6.96 m, RMSE of 8.44 m, and LE90 of 14.29 m, while SRTM and ALOS DEMs 732 

were intermediate in accuracy with 2.58 and 1.87 m SDs, 3.82 and 2.08 m RMSEs, and 5.58 and 733 

3.64 m LE90s, respectively.  The offsets generated by non-ground features in TDX DEMs were 734 

largely removed by the ETEW, ATIN, PM, and PM2D filters.  The PM filter produced the best 735 

results, reducing SD to 1.03 m, RMSE to 1.06 m, and LE90 to 1.73 m, making 39%-46% 736 

improvement over unfiltered data. 737 

 738 

The comparison between DEM elevations and LiDAR measurements below 20 m indicated a 739 

similar pattern in accuracy from DEMs versus GPS measurements.  TDX DEMs had the best 740 

accuracy, generating the smallest SD of 1.88 m, RMSE of 2.27 m, and LE90 of 3.66 m.  741 

However, SRTM DEMs produced the largest errors, with RMSE of 4.81 m, and LE90 of 7.16 m 742 

due to an offset in the data, while ASTER and ALOS DEMs generated slightly lower errors than 743 

SRTM DEMs.  The error measures from DEM versus LiDAR elevations were larger than the 744 

error measures from DEM versus GPS elevations because LiDAR measurements covered a large 745 

area of 150 km2, where there were multiple types of land cover including marsh, forest, crop 746 

land, and low to high development.  It is better to estimate the statistical parameters for elevation 747 

differences using MD and NMAD than using ME and SD because, except for ASTER, the 748 

differences between satellite-derived and LiDAR elevations did not follow a normal distribution.  749 

The comparison of DTMs from the ETEW, ATIN, PM, and PM2D filters showed that the PM 750 
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filter produced the best result, with a SD of 1.16 m, RMSE of 1.30 m, and LE90 of 2.02 m, 751 

resulting in a 43% improvement in RMSE after filtering. 752 

 753 

The inundation areas from the TDX DTM for scenarios of 3, 5, 10, and 15 m water level rise 754 

produced errors between -13% and -4% compared to the inundation areas from LiDAR DTM.  755 

The error in estimates of inundated areas decreased as the magnitude of water level rise 756 

increased, because the area of inundation increased as water level rose, but the error of the 757 

inundation edge did not decrease.  The high, moderate, low, and extremely low risk zones 758 

derived from TDX and LiDAR DTMs differed by -13%, -7%, 2%, and -1%, respectively, for a 759 

150 km2 area with elevations below 20 m.  The TDX DTM underestimated the inundation extent 760 

as indicated by MEs of -75.0 to -49.2 m and SDs, RSMEs, and LE90s of the differences in 761 

inundation extent for 3, 5, 10, and 15 m water level rise ranged from 104.4-144.5, 115.3-162.7, 762 

and 172.9-232.8 m, respectively.  Therefore, TDX DTMs provide an effective approximation of 763 

LiDAR DTMs for coastal flood mapping in the area where LiDAR data are not available.  By 764 

contrast, the inundation areas from ASTER, SRTM, and ALOS DEMs for 3 and 5 m water level 765 

rise scenarios had -98% to -73% of differences compared to the inundation areas from the 766 

LiDAR DTM.  The inundation areas below 5 m from SRTM and ASTER DEMs were 5 and 15 767 

times smaller than the inundated area based on LiDAR.  Among ASTER, SRTM, and ALOS 768 

DEMs, no single data source consistently performed the best in defining inundation areas for 3, 769 

5, 10, and 15 m scenarios of water level rise.  We strongly recommend that TDX DEMs be 770 

utilized to conduct both global and local analysis of sea level and storm surge impacts in 771 

developing countries. 772 

 773 
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The DTMs generated by filtering and interpolating TDX DEMs improved the accuracy of 774 

ground elevations by about 40% along the coast near Port-au-Prince, Haiti, thereby greatly 775 

reducing the uncertainty in mapping coastal inundation caused by sea level rise and storm surges.  776 

Therefore, filtering methods must be applied to TDX DEMs to derive DTMs for accurately 777 

delineating coastal flood hazard zones. However, the effectiveness of filtering is limited by the 778 

spatial resolution of TDX DEMs for locations where dense vegetation and buildings prevent 779 

radar waves from reaching the ground.  Though filtering methods employed in this study worked 780 

well for medium-developed or patchily vegetated areas, the existing filters need to be improved, 781 

or a new filter that fits the characteristics of TDX DEMs needs to be developed to generate better 782 

DTMs in the future. 783 
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Table 1. Error measures. The representative row in the table is explained as follows.  The row of 994 

“ASTER:GPS” shows the error measures of the differences between ASTER elevations and 995 

mean GPS elevations within ASTER grid cells.  The row of “ETEW:GPS” shows the error 996 

measures of the differences between the elevations of the ETEW filtered TDX DEM and mean 997 

GPS elevations within TDX grid cells.  The row of “ASTER:LiDAR” shows the error measures 998 

of the differences between the ASTER and LiDAR elevations.  The row of “ETEW:LiDAR” 999 

shows the error measures of the differences between the filtered TDX DEM and LiDAR DTM 1000 

elevations.  The row of “PM:LiDAR 3m” shows the error measures of the differences between 3 1001 

m contours from the PM filtered TDX DEM and LiDAR DTM. 1002 

Comparison Number 

of 

samples 

ME 

(m) 

MD 

(m) 

MNB 

(%) 

SD 

(m) 

RMSE 

(m) 

NMAD 

(m) 

LE90 

(m) 

R2 

ASTER:GPS 95 4.83 3.01 654.4 6.96 8.44 8.33 14.29 0.31 

SRTM:GPS 95 2.83 3.00 277.0 2.58 3.82 2.29 5.85 0.00 

ALOS:GPS 95 0.92 0.20 90.8 1.87 2.08 1.63 3.64 0.10 

TDX:GPS 125 0.71 0.23 39.4 1.59 1.74 0.99 3.20 0.32 

ETEW:GPS 125 -0.09 -0.16 -11.3 1.14 1.14 1.21 1.81 0.69 

ATIN:GPS 125 0.28 0.08 4.1 1.37 1.39 1.19 2.15 0.62 

PM:GPS 125 -0.27 -0.22 -20.2 1.03 1.06 1.06 1.73 0.74 

PM2D:GPS 125 0.33 0.10 7.2 1.33 1.37 1.17 2.24 0.61 

ASTER:LiDAR 165624 2.45 2.41 94.5 3.46 4.24 3.42 6.70 0.66 

SRTM:LiDAR 165624 4.18 3.95 89.6 2.38 4.81 2.09 7.16 0.87 

ALOS:LiDAR 165624 4.46 4.17 97.5 2.06 4.91 1.52 6.82 0.90 

TDX:LiDAR 1022699 1.27 0.69 20.0 1.88 2.27 1.12 3.66 0.92 

ETEW:LiDAR 1022699 0.76 0.57 12.5 1.47 1.66 0.96 2.51 0.94 

ATIN:LiDAR 1022699 0.80 0.59 12.8 1.32 1.55 0.94 2.29 0.95 

PM:LiDAR 1022699 0.60 0.40 8.5 1.16 1.30 0.81 2.02 0.96 

PM2D:LiDAR 1022699 0.88 0.63 14.3 1.33 1.60 1.03 2.57 0.95 

PM:LiDAR 3m 694 -49.2 -20.9 -5.8 104.4 115.3 52.9 172.9 0.99 

PM:LiDAR 5m 709 -75.0 -28.4 -6.5 144.5 162.7 48.7 211.1 0.99 

PM:LiDAR 10m 720 -59.9 -26.0 -3.3 123.0 136.7 51.4 202.9 1.00 

PM:LiDAR 15m 711 -66.4 -29.8 -1.7 115.5 133.2 56.9 232.8 1.00 

Table 2. Inundation areas generated from ASTER, SRTM, and ALOS DEMs, and TDX and 1003 

LiDAR DTMs for hypothetical water level rise (WLR) scenarios of 3, 5, 10, and 15 m.  The 1004 
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TDX DTM was generated by the PM filter.  The differences in percentage between the areas 1005 

from ASTER, SRTM, ALOS, and TDX, and the area from LiDAR were listed in parentheses. 1006 

WLR 
Scenarios 

(m) 

ASTER 
(km2/%) 

SRTM 
(km2/%) 

ALOS 
(km2/%) 

TDX 
(km2/%) 

LiDAR 
(km2) 

Risk Class Risk Area 
(TDX/LiDAR, 

km2/km2/%) 

3 0.7    (-98) 2.1   (-93) 1.6   (-95) 26.0   (-13) 30.0 High 26.0/30.0 (-13) 

5 3.3    (-93) 11.0 (-73) 9.0   (-82) 44.7   (-11) 50.0 Moderate 18.7/20.0 (-7) 

10 68.7  (-22) 56.9 (-35) 55.1 (-38) 83.5   (-5) 88.2 Low 38.8/38.2 (2) 

15 111.3 (-7) 91.2 (-24) 90.9 (-24) 114.9 (-4) 119.8 Extremely  

Low 

31.4/31.6 (-1) 

 1007 

 1008 

  1009 
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Figure Captions 1010 

 1011 

Fig.1. Hispaniola Island and locations of GPS and LiDAR surveys. 1012 

 1013 

Fig.2. (a) Baseline, transects across the shoreline, and contours.  The interval between two 1014 

adjacent transects is 100 m and for clarity only one of ten consecutive transects is displayed.  The 1015 

shoreline section around Toussaint Louverture International Airport is enlarged in the imbedded 1016 

map.  (b) The differences between 5 m contours from LiDAR and TDX DTMs along transects.  1017 

Large contour line differences occur between transects 700 and 720, a marsh area next to the 1018 

river on the delta plain. 1019 

 1020 

Fig.3. Scatter plots of ASTER, SRTM, ALOS, and TDX DEM elevations versus GPS 1021 

measurements at Pedernales, Samana, and Sanchez in The Republic of Dominica.  The value of 1022 

GPS elevation and horizontal bar of a data point represents the mean and standard deviation of 1023 

the GPS elevations within a DEM grid cell.  Note that the ranges of ALOS and TDX DEM 1024 

elevations are reduced by half of the ranges of ASTER and SRTM elevations to show elevation 1025 

scatteredness better. 1026 

 1027 

Fig.4. Scatter plots of DTM elevations from the ETEW, ATIN, PM, and PM2D filters versus 1028 

GPS measurements at Pedernales, Samana, and Sanchez in The Republic of Dominica. 1029 

 1030 
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Fig.5. The aerial photograph, GPS points, grid cells of the SRTM DEM (upper panel), and the 1031 

elevation profile across the GPS measurements (lower panel) at Samana in The Republic of 1032 

Dominica.  The GPS measurements along the profile was generated by projecting the points 1033 

within a 100 m buffer zone to the profile line.  The x coordinate of the profile starts from shore 1034 

(zero) and extends inland (left side of the aerial photograph). 1035 

 1036 

Fig. 6. (a) The distribution of the elevation differences between the ASTER DEM, SRTM DEM, 1037 

ALOS DEM, TDX DEMs, PM based DTM, and LiDAR DTM.  Q-Q plots for the differences 1038 

between (a) ASTER and LiDAR, (c) SRTM and LiDAR, (d) ALOS and LiDAR, (e) TDX and 1039 

LiDAR, and (f) PM based TDX and LiDAR elevations. 1040 

 1041 

Fig. 7. Scatter plots of ASTER, SRTM, ALOS, and TDX DEM elevations versus the LiDAR 1042 

DSM elevations around Port-au-Prince in Haiti. 1043 

 1044 

Fig. 8. Scatter plots of DTM elevations produced with ETEW, ATIN, PM, and PM2D filters 1045 

versus the LiDAR DTM elevations around Port-au-Prince in Haiti. 1046 

 1047 

Fig. 9. Aerial photograph (upper panel) and the elevation profile (lower panel) near Port-au-1048 

Prince in Haiti.  The profile starts from a location close to shore with an x coordinate of zero and 1049 

extends inland. 1050 

 1051 



50 

Fig. 10. TDX DEM, LiDAR DSM, TDX DTM, and LiDAR DTM for the area near Port-au-1052 

Prince in Haiti. 1053 

 1054 

Fig. 11. The inundation areas derived from ASTER DEM, SRTM DEM, ALOS DEM and 1055 

LiDAR DTM for a 5 m scenario of water level rise. 1056 

 1057 

Fig. 12. Inundation areas derived from the PM-filtered TDX DTM versus those from the LiDAR 1058 

DTM for 3, 5, and 10 m scenarios of water level rises.  The lower and upper boundaries for the 5 1059 

m inundation area estimated using the uncertainty in the TDX data are also displayed. 1060 

 1061 

 1062 

 1063 

 1064 

 1065 

 1066 




























